Int1. J. Solids Strucrures Vol. 33, No. 27, pp. 3951 39%67. 1996
Copyright * 1996 Elsevier Science Ltd
Pergamon

Printed in Great Britain. All rights reserved
0020-7683(95)00226-X

0020 7683:96 §15.00 + .00

THREE-DIMENSIONAL INTERACTIONS OF A
CIRCULAR CRACK WITH DIPOLES, CENTERS OF
DILATATION AND MOMENTS

E. KARAPETIAN and M. KACHANOV
Department of Mechanical Engineering, Tufts University. Medford, MA 02155, U.S.A.

(Received 19 May 1995 ; in revised form 19 September 1995)

Abstract— Exact solutions in elementary functions are derived for the stress intensity factors of a
circular crack interacting with various stress sources: dipoles, moments, centers of dilatation and
rotation. Such stress sources may model defects like vacancies. foreign particles, dislocations.
Locations and orientations of the stress sources with respect to the crack are arbitrary. Copyright
" 1996 Elsevier Science Ltd

1. INTRODUCTION

Stress intensity factors (SIFs) induced on a circular crack by stress sources like dipoles,
moments, centers of dilatation and rotation are derived in elementary functions. Positions
and orientations of the stress sources with respect to the crack are arbitrary.

Besides being of interest of their own, these solutions are important for applications,
where such stress sources may, under certain conditions, model defects like microcracks,
cavities, foreign particles, dislocations. etc.

These solutions are also relevant for the interaction of a crack with an arbitrary system
of forces distributed in a small volume. Although such a problem can be handled in a direct
way, by simply summing (or integrating) the results for separate stress sources, this would
yield exceedingly cumbersome expressions. A substantial simplification is possible if the
volume, over which the stress sources are distributed, is small, as compared to its distance
from the crack. In this case, the impact of the force system on the crack can be reduced, to
within small values of higher order, to impacts of the resultant vector, resultant moment
and three mutually orthogonal dipoles.

To avoid making formulas, that are already lengthy. even lengthier, we assume the
solid to be isotropic. Generalization to the case of the transversely isotropic solid (provided
the crack is parallel to the plane of isotropy) can be obtained, in a straightforward way,
using the same method.

Our approach is based on the new method in the potential theory developed by
Fabrikant (1989a,b) and applied to the problem of a circular crack.

In the literature, several special cases of a penny-shaped crack interacting with point
forces have been considered. In the simplest case when the forces are applied directly at the
crack faces, expressions for SIFs foliow, in principle, from the results of Galin (1961) on
the mathematically similar contact problem and of Uflyand (1965), although the mentioned
works do not contain explicit formulas for SIFs. Collins (1962) gave explicit results for
SIFs in the axisymmetric case of a point force normal to the crack and applied above the
crack center. Kassir and Sih (1975) solved the case of a point force applied above the crack
center in the direction tangential to the crack and Bueckner (1987)-—the case of a force of
arbitrary direction with the point of application in the plane of the crack (outside of it).
Finally, Karapetian and Hanson (1994), using the new method of Fabrikant (1989a,b),
derived SIFs due to an arbitrary point force in space.

We also mention several related works on somewhat different configurations. Rice
(1985a) derived the mode I weight function from which the expression for K, due to a point
force normal to the crack and applied at an arbitrary point in space immediately follows.
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Fig. 1. The configuration of a penny shaped crack and a point force.

(Note that his work also analyzed a more general configuration of a semi-infinite planar
crack with a perturbed front line.) Bueckner (1989) gave results for the SIFs in the case of
a half-plane crack interacting with a point force of arbitrary direction applied at the point
coplanar to the crack. His results were applied by Gao (1989) to the problem of an external
circular crack interacting with a point force of arbitrary direction applied at the ligament in
the plane of the crack. Rice (1985b) and Hanson (1990. 1992) considered three-dimensional
interactions of a crack and a coplanar dislocation loop. Fabrikant ez a/. (1994) solved the
problem for the external circular crack in the transversely isotropic material interacting
with a symmetric system of two forces normal to the crack and derived K, due to a point
force applied at an arbitrary point.

2. INTERACTION OF AN ARBITRARILY POSITIONED POINT FORCE WITH A
CIRCULAR CRACK

We start with the problem of a circular crack interacting with a point force
Q = (Q..Q,,Q.) of arbitrary direction applied at an arbitrary point (p, ¢,z) ; the edge of a
crack is parametrized by angle ¢, (Fig. 1). Results for SIFs derived recently by Karapetian
and Hanson (1994) are transformed here to a simpler form. Namely, they can be reduced,
after some algebra, to the following expressions
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where the elementary functions f, <(p. ¢. - : ¢) are introduced (overbar denotes a complex
conjugate) :
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The following notations are used in the formulae above and throughout the text:

(R 1s the distance between the crack edge and the point
of application of the force)

R = p*+a’—2pacos(¢— )+
R} = p*+da*—2pacos(¢p—p,) (R, is the projection of R onto the crack plane)

st =a —ape"” " g = pe”—ae (note that ¢g = R}).

In addition, the following two geometric parameters play a key role in the analysis:
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Note that /, remains bounded as either p or = (or both) increase and that the following
relation (important for the algebra involved) holds : ¢’z = (&’ —5)(53 —a*).

We remark that K, K, due to Q. can be obtained from those due to Q. by the
replacements ¢ — ¢+ /2, ¢y — ¢po+n/2 and O, — Q.. Conversely, the SIFs due to Q, are
obtained from those due to Q. by making the same replacements for the angles, although
the replacement Q. —» — Q, now involves a minus. For K. a similar scheme of replacements
works in the opposite way, namely, the SIF due to Q, is obtained from the one due to Q,
by ¢ — ¢+n/2. ¢y — dy+n/2and Q, — — Q, and, conversely, the SIF due to Q. is obtained
from that due to Q, by ¢ — ¢ +7/2. ¢y — ¢py+n/2and Q, - Q..

[t is assumed, throughout this work, that - > 0 (the point of application of the stress
sourceis ““above’ the crack). Results forz < 0 can be obtained from the ones for z > 0 by the
following symmetry relations [Kachanov (1993)}: fi(—~z.p. ¢ ) = fulz.p. @+ 1 o+ 1),
with similar relations holding for the functions g, in the text to follow.

Two previously published results—for the axisymmetrical configuration [Collins
(1962), Kassir and Sih (1975)] and the coplanar configuration [Bueckner (1987)]—are
recovered as special cases, at p = 0 and z = 0, correspondingly.

An interesting physical observation (that may seem counterintuitive) can be made. If
the point of application of Q is in the plane of the crack, then the normal (tangential)
component of Q does not generate any mode [ (modes II, 1II) SIFs. This consequence of
eqns (1)-(3) can be reconciled with intuition via the reciprocity theorem.

3. INTERACTION OF A CIRCULAR CRACK WITH DIPOLES

A system of two equal and opposite point forces Q = (Q,. Q.. 0.) and —Q with points
of application lying on the line of Q and separated by distance A, in the limit of 0 — o and
h — 0, 1s called a dipole. The limiting value of the product lim, ., ,.,Qk = P is called
dipole’s intensity (assumed to be finite) ; it is taken to be positive (negative) if the forces
are directed away from (towards) each other.

The solution for K can be obtained from the solution for the point force by taking the
directional derivative of (1) in the direction of Q. Since O, = Qu, (k = x, ».z). we have:

P CF,
Kildg) = - — A — 9)
e An7 (1 —v)\/ 2a mn ;_1,: cn

where F. = (@ —1;) " Ref,. F. = (@’ =)' " Imf,, F. = (¢° —[})" * f, and a, are directional
cosines between the x. y, - axes and the dipole line (since (9) is quadratic in %, it is invariant
with respect to the choice of sense along this line).

Calculations vield the following expression for K :
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Ki(¢y) = — ] — (Re[oig, +27g: +2.2.91]
4r=(l —v)/ 2a

+1Im [o,0,9, —o2,.9: + 220,93 +2-[0,gs —2.9: + 2961} (10)

where the elementary functions g, 4(p, ¢,z ; ¢,) are given in the Appendix.
Similarly. the solution for K;; has the form

P CH,
Kll(d)(l) = T Re < Z %%y ((‘!l’l > (] 1)

4n° (1 — v)/ 2a

nen = N.ys

where H, = (@' =)' *e “o(fi—f). H, = (@ —F)' Yie "(fi+fi), H. = (& —F)"*f; and
calculations yield
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where the elementary functions ¢; s(p, ¢. = ; ¢,) are given in the Appendix.

The solution for K, is obtained from the one for K, by omitting the multiplier 1/(1 —v)
and replacing Re by Im in (12).

Figure 2 illustrates these resuits.

Coplanar case. If the point of application of the dipole lies in the plane of the crack,
the results simplify considerably. although calculations require finding non-trivial limits of
the type 0/0.

Two cases should be distinguished : if the point of application of the dipole lies on the
crack face, then /| should be understood as p and 1, as a; if the dipole is applied outside of
the crack, /, should be understood as ¢ and /, as p. For the case when this point is outside
of the crack (the case when the mentioned point is on the crack face is analyzed similarly)
the results are as follows:
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Fig. 2. Dimensionless stress intensity factors K, = 41"\, 2a" " P" 'K, ,;n around the crack edge due to a
dlpole oriented in the =-direction and applied at the point (p/a = 7 ;¢ = n'3; ) for several values of z. Poisson’s
ratio v = 0.3.
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In particular, for a dipole in the z-direction, the results are:

<cos do— ¢ cos ¢>
7]

0

1—2v) a 1
Kigp=p—o—0 & L g K, (16)
dn-(1—v)/2a (p~—a’) - Ry

Note a similarity between the expression (16) and the one for a circular crack interacting
with a coplanar infinitesimal dislocation loop with Burgers’ vector b in the z-direction
[Hanson (1990)], for which
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Comparison of (16) and (17) establishes the equivalence relation between the dipole inten-
sity and the magnitude of Burgers’ vector: P = bE/[(1 +v){1 —2v)].

4. INTERACTION OF A CIRCULAR CRACK WITH A CENTER OF DILATATION

Three mutually orthogonal dipoles of equal intensity P applied at the same point
constitute a center of dilatation (of intensity P). Such a stress source may be used to model
a lattice vacancy. an interstitial atom or a foreign particle of the spherical shape.

Note that the stress field induced by such a source is identical to the one generated by
a pressurized spherical cavity of radius 4 in an elastic continuum outside of the cavity
(Lamé problem). The equivalence is established by the following relation between the
pressure ¢ on the cavity and the dipole intensity :

12y
g ==
2n(1 — )b’

(18)

We consider a center of dilatation of intensity P applied at the point x. », = and formed
by three dipoles in mutually orthogonal directions characterized by directional cosines
(%o % 22), (Bin Bi- B2) and (7.7, 7.). The mode I SIF induced on the crack has the form:

P

4 (1l —v) .

— BB+ )
Z (1111?II+[P1/I)1+IFII!‘H) cn

\// 204 man = vz

(19)

Since a, B. y are mutually orthogonal unit vectors, the expression in parentheses constitutes
the nim component of the unit tensor, i.e. it equals to Kronecker’s delta 6, Thus,

P (F.  ¢F,  CF.
K, = *;4",—~< LI ) (20)
AT (1—v)y2a\ Ox & s

This result is independent of the orientation of the triad «. f. y: for example, the dipoles
can be assumed aligned with the x, v, z directions. It is this invariance that justifies the
concept of a center of dilatation.

Equation (20). in principle, solves the problem. However. an alternative, more econ-
omical, calculation that yields results in a simpler form can be suggested : we differentiate
the point force solution (1) with respect to x, v. z and use the operator
A =¢/ex—i¢/éy = e (¢iép—(i/p) &i¢¢) for transition to the cylindrical coordinates.
Then

R { E; [ @ —F f:]+ReAl @’ -4 £, ]}. (21
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Similar operations for modes II and III (that involve the operator A = &/¢x+id/cy)
yield all three SIFs:

Ki(dg) \t (@ — ) a Y6 \L
Kuldo) = P4zTI) 5 R'3<, gis +e (g2 —gix) (22)
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in terms of elementary functions g5 14(p. ¢. = : ¢b,) given in the Appendix.
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Fig. 3. Dimensionless stress intensity factors K, ;; ,, = 47" 24°P 'K, , 4 around the crack edge due to a center
of dilatation located at the point (p'a = 2:¢ = n 3 :) for several values of . Poisson’s ratio v = 0.3.

These results are illustrated in Fig. 3.
Coplanar case. In the case when the point of application of the center of dilatation lies

in the plane of the crack =z = 0 (and is outside of the crack).
P(l1—2v) a 1
Kl(d)(l) = 5 — 3 A lr KII = KI[I = 0. (23)
27°(1 — V) 2a (pm—a) " R

Note that the result in (23) is twice the value of K, due to a coplanar dipole in the z
direction.

5. INTERACTION OF A CIRCULAR CRACK WITH A MOMENT

A pair of two equal and opposite point forces Q and —Q, with the lines of action
separated by the moment arm 4 and applied at the points where # intersects these lines, in
the limit of Q — o¢ and # — 0, constitutes a concentrated moment. The limiting value of
Qh 1s the intensity of the moment and is denoted by M.

The SIFs due to a moment can be obtained by differentiating the results for the point
force in the direction normal to the force, i.e. along the moment arm /4. Denoting the
directional cosines of 4 by ., f,. f. and taking into account that @, = Qx, (k = x,¥,z2).
where %, are directional cosines of the force direction, we obtain, for the mode 7 SIF :

CF,

-
é

M
Ki(gpo) = — — 2 B (24)

4'7[Z (1 - \')\/"Za A= VT

where functions F,, F,. F. are defined as in (9). Calculations yield the following result in
terms of the elementary functions g, , given in the Appendix :
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Fig. 4. Dimensionless stress intensity factors K, = 4’ Ea”M"K‘,F,,.,,,) around the crack edge due to a
moment with the moment axis in the y-direction (produced by a pair of forces in the z-direction) applied at the
point (p:a = 2:;¢ = n:3::) for several values of -. Poisson’s ratio v = 0.3.
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K = —
o) 4n*(1—v)/2a
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For K, the result can be obtained from (24) by replacing functions F, by H, (defined as in
(11)) and taking the real part of the sum (in accordance with (2)):

M@ —I)' iy
Kiy(§o) = — == Re e oo [B(g:—95) = (g +910) + (911 —§12)]
(1 —v)/2a

+ie” %o, [B(gs +gs) —ﬁ;-(gt) —10)+ B9 +9:2)]+2[B.g:5 _ﬁ,lgm +5:9|5]}- (26)

The solution for K, is obtained from (26) by omitting the multiplier 1/(1 —v) and replacing
Re by Im.

Figure 4 illustrates the results.

Coplanar case. If the moment M is applied in the plane of the crack (outside of the
crack), the results are as follows:
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0
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6. INTERACTION OF A CIRCULAR CRACK WITH A CENTER OF ROTATION

Center of rotation of intensity M is formed by two mutually orthogonal force pairs
applied at the same point and producing moments of the same intensity M in the same
direction.

Superimposing the result (24) and the one obtained from (24) by replacements

(ﬁv\'v ﬂy’ .B:) - (5(\—, %s “:)e (1\‘- Ay 1:) - (- ﬁ,\'- - ﬂ\" - B:) )’lelds :

M cF,  CF. oF. ¢F,
Ki(o) = — {(a\ﬂ:—oc_-ﬁ\) (‘7 - %j)ﬂasﬁ\.—a\ﬂ:) ( -5 )

47‘(£ (1— V)\//Z; ax cZ
CF, (AF\ 30
+ (1\,[))7\ - xv\'ﬁ \‘) (-1 - (’:.\‘ . ( )

Since the expressions «,f3,,— ,,f3, in (30) constitute the x, v and = components of the unit
vector of the moment direction, we obtain :

1 cF, CF. cF.  CF, cF.  CF,
KI(d)O) = 5 N — M,\ —~ — = +LM‘. — — o +M: 3 _ .
4n (1 —v)/2a ez cy Cx cz Jy ox

(3D

An important observation 1s that K, is expressed solely in terms of vector M and does not
depend on the exact orientation (in the plane normal to M) of the two force pairs that
constitute M. This invariance justifies the concept of a center of rotation.

The elastic field produced by such a stress source (and its impact on SIFs) is identical
to the one (outside of the sphere) in the so-called Robin’s problem where a rigid sphere of
radius b embedded into an elastic continuum is subjected to a rotation 8. This equivalence
is established by the following relation between the rotation # and the moment M:
# = M/8rnGh*, where G is the shear modulus.

K, can be further expressed in terms of the elementary functions g, s :

K{(d’()) =

(a:_[:)lz
(M (Img:+g5)+ M, (9. —Regs) — M.Im(g. +9,)}. (32)
dn (1 —v)/2a

Similarly, for K, we have:

(al__l'.‘)l M . ) .,
Ki(po) = — - — Re{M [ie (g, +g12)+g.]—M,e (g1 —g12) —d3)
A (1—-v)/ 2a

—M.e w‘)”[({/‘) +4gi0)+ilgs +gx)]}‘- (33)

The solution for K,;; is obtained from the one for K, by omitting the multiplier 1/(1 —v)
and replacing Re by Im in (33).

Figure S illustrates the results.

Coplanar case. If the point of application of the center of rotation lies in the plane of
the crack = = 0 (outside of the crack),

K, =0 (34)

1—-2v a 1 {4»’—5

K, = - B ~—— (M, sin ¢, — M, cos
S U oy e ey R 12y (s gem M cosy

— (M, sin¢p—M, cos @) [2(1 +v)cos (¢—¢0)—vg v4vw}

R
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Fig. 5. Dimensionless stress intensity factors K, = 47:1\/5 @ *M 'K, around the crack edge due to a
center of rotation with the axis of rotation in the y-direction (produced by two pairs of forces. in the z and x-
directions) applied at the point (pia = 2:¢ = 7/3::) for several values of z. Poisson’s ratio v = 0.3.

R a
+ p R:a [2(1 —2v)(M, sin ¢+ M, cos P)sin{dh — ¢y ) — (1 —v) <M_\ (cos ¢o— ECOS d))
0
M. [ sing, — ° sin Lol Moimh, - M Rehy) (35)
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1 —2v a 1 {4v—35 .
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(36)
where /4, -(p, ¢ ; ¢) are introduced :
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7. INTERACTION OF A CRACK WITH A SYSTEM OF FORCES DISTRIBUTED IN A
SMALL VOLUME

Interaction of a crack with several stress sources (or continuous distribution of them)
can, in principle, be analyzed by direct summation (or integration) of the results for SIFs
over all the stress sources. However, this may lead to very lengthy expressions or to integrals
that cannot be expressed in any standard functions.

We consider a special case when the system of forces is distributed over a volume V
which is small as compared to its distance from the crack. Then, to within small values of
higher order, the results can be obtained in a much simpler way, by reducing the impact of
the force system to the ones of the resultant vector, resultant moment and three mutually
orthogonal dipoles.

Thus, we consider 4 crack interacting with a system of point forces Q', ... Q" applied
at the points O, ... O, located in a neighbourhood of the point O. The size of this
neighbourhood is small as compared to the distance between the crack and the point O
(continuous distribution of forces can be considered by changing summations to inte-
grations in the formulas to follow.)

In an infinite linear elastic solid such a system of forces can be represented by a
superposition of the following *‘elementary™ sources [see, for example, Lur’e (1964)]:

1. Point force—the resultant vector of Q', . .. Q*:

Q=2xQ". (37)

2. The resultant moment about O

M, = Zr'”" x Q" (38)

where r'” is the position vector of O, with respect to O.

3. Three mutually orthogonal dipoles of the intensities P, P,, P, and directions e,, e,,
e, that are the eigenvalues and eigenvectors of the symmetric second rank tensor (*“force
system tensor’’)

P=T(Q"r"+r"Q") (39

where Qr, rQ are dyadic products of vectors. (In the principal representation P = P e e,
+ P,e.e,+ P.e;e;. each term corresponding to a dipole.) This system of three dipoles can be
further decomposed into a sum of the “hydrostatic”” and deviatoric parts:

P = /\l+(P—/D (40)

where J,(P) = ZQ" - r'" is the linear invariant of P. The first term in (40) corresponds to a
center of expansion, whereas the second term reduces to three dipoles of intensities P, — { P,
P—<( Py, P,— (P> where (P> = (P,+ P.+ P;)/3.

These representations are valid to within terms of a higher order with respect to the
small parameter (size of V)/(distance from V to the point of observation). In presence of a
crack, the same representations hold for the impact of the force system on SIFs, provided
size of V <« distance from V to the crack. Thus, the results derived in the preceding sections
constitute a full system of solutions: SIFs due to an arbitrary system of forces distributed
in a small volume can be expressed in terms of these solutions.

Note that SIFs due to the resultant vector (37) decrease as (distance from V to the
crack)” " whereas SIFs due to (38, 39) decrease as (distance from V to the crack) .
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APPENDIX

Functions g, = g.(p. ¢. =1 ¢,) are given here. Functions g,, gs. gs. g1 and g, are obtained, respectively, from
the functions ¢,. g4, g-. gx and g,; given below by the replacements (¢, ¢y} — (¢ + 7.2, po+7/2) everywhere,
including g.
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